
DroidBot: A Lightweight UI-Guided Test Input
Generator for Android
Yuanchun Li, Ziyue Yang, Yao Guo, Xiangqun Chen

Key Laboratory of High-Confidence Software Technologies (Ministry of Education)
School of Electronics Engineering and Computer Science, Peking University, Beijing, China

Email: {yuanchun.li, yzydzyx, yaoguo, cherry}@pku.edu.cn

Abstract—As many automated test input generation tools for
Android need to instrument the system or the app, they cannot be
used in some scenarios such as compatibility testing and malware
analysis. We introduce DroidBot, a lightweight UI-guided test
input generator, which is able to interact with an Android app on
almost any device without instrumentation. The key technique
behind DroidBot is that it can generate UI-guided test inputs
based on a state transition model generated on-the-fly, and allow
users to integrate their own strategies or algorithms. DroidBot
is lightweight as it does not require app instrumentation, thus
no need to worry about the inconsistency between the tested
version and the original version. It is compatible to most
Android apps, and able to run on almost all Android-based
systems, including customized sandboxes and commodity devices.
Droidbot is released as an open-source tool on GitHub [1], and
the demo video can be found at https://youtu.be/3-aHG SazMY.

Keywords-Android; dynamic analysis; automated testing; mal-
ware detection; compatibility testing;

I. INTRODUCTION

In recent years, mobile applications (apps in short) have
seen widespread adoption, with over two million apps avail-
able for download in both Google Play and Apple App Store,
while billions of downloads have been accumulated.

As there are many apps and many different devices, au-
tomating app testing has become an important research direc-
tion. In particular, a great deal of research has been focused
on automated input generation techniques for Android apps.
According to a recent survey [2], most approaches make use
of either app instrumentation or system modification in order
to get enough information to guide testing.

However, it is unrealistic to instrument an app or the system
in some scenarios. For example, in compatibility testing, an
app should be tested “as is” on commodity devices in order to
find out which device may cause a crash. Another example is
malware analysis. As many malicious apps are obfuscated, it
might be difficult, even not impossible, to instrument them.
Some malicious apps also apply sandbox detection, which
might lead to different behaviors on instrumented testing
devices and real devices.

This demonstration paper presents DroidBot, a lightweight
UI-guided test input generator for Android apps. The design
principle of DroidBot is to support model-based test input
generation with minimal extra requirements.

DroidBot offers UI-guided input generation based on a state
transition model, which is generated on-the-fly at runtime. It

then generates UI-guided test inputs based on the transition
model. By default the input is generated with a depth-first
strategy, which is effective for most cases. Users can also
customize the exploration strategy by writing scripts or inte-
grate their own algorithms by extending the event generation
modules, making DroidBot a highly extensible tool.

The main reason why DroidBot is more lightweight is
that it does not require prior knowledge of unexplored code.
Unlike many existing generators which rely on static analysis
and instrumentation to get knowledge of unexplored code,
DroidBot only models the explored states based on a set
of Android built-in testing/debugging utilities. Although this
might make DroidBot harder to trigger some specific states, the
trade-off enables DroidBot to work with any apps (including
the obfuscated/encrypted apps that cannot be instrumented) on
almost any customized device (unless the device intentionally
removes the built-in testing/debugging modules from the orig-
inal Android framework, which rarely occurs.).

DroidBot also offers a new way to evaluate the effectiveness
of test inputs. Existing approaches mainly use EMMA [3] on
open-source apps or instrument apps to calculate test coverage.
However, for anti-instrumentation apps (for example verifying
the signature at runtime or encrypting the code), it is difficult
or even impossible to get their test coverage. DroidBot is able
to generate the call stack trace for each test input, which
contains the app methods and system methods triggered by
the test input. We can use the call stack as an approximate
metric to quantify the effectiveness of test inputs.

The source code of DroidBot is available at GitHub [1].

II. TOOL DESIGN

The overall architecture of DroidBot is shown in Figure 1.
To test an app on a device, DroidBot requires the device being
connected via ADB. The device could be an emulator, a com-
modity device, or a customized sandbox such as TaintDroid [4]
and DroidBox [5].

We introduce the Adapter module to provide an abstraction
of the device and the app under test (AUT). It deals with
low-level technical issues such as compatibility with different
Android versions and different screen sizes, maintaining con-
nection with the device, sending commands to the device and
processing command outputs, etc.

The Adapter also acts as a bridge between the test environ-
ment and the test algorithm. On one hand, it monitors the state

DroidBot

Android
DeviceApp

Adapter

GUI info
Process info

Logs

GUI input
Intent
Document
Sensor

strategy
script…

App model

Brain

Fig. 1. DroidBot Overview.

of the device and AUT and converts the state information to
structured data. On the other hand, it receives the test inputs
generated by the algorithm and translates them to commands.
With the Adapter, DroidBot is able to provide a set of easy-
to-use high-level APIs for users to write algorithms while en-
suring that the algorithms work in different test environments.

The Brain module receives device and app information
produced by the Adapter at run-time, and sends generated
test inputs to the Adapter. Test input generation is based on a
state transition graph constructed on the fly. Each node of the
graph represents a device state, while the edge between each
pair of nodes represents the test input that triggered the state
transition. DroidBot integrates a simple but effective depth-
first exploration algorithm to generate test inputs. It also allows
users to integrate their own algorithms or use app-specific
scripts to improve the test strategy.

Such design improves the usability of DroidBot. Table I
shows the usability comparisons between DroidBot and other
public-available test input generation tools. We can see that
DroidBot requires as little requirements as Monkey, while
providing much more extensible features comparable to other
tools requiring instrumentation.

III. IMPLEMENTATION

A. Lightweight Monitor and Input

DroidBot fetches device/app information from the device
and sends test inputs to the device through ADB. Both the
monitoring and input phases are lightweight because they are

TABLE I
USABILITY COMPARISON OF EXISTING PUBLICLY-AVAILABLE BLACK-BOX

TEST INPUT GENERATORS. NOTE THAT SOME DATA IS FROM
CHOUDHARY et al. [2].

Tool Instrumentation Strategy ProgrammableSystem App
Monkey [6] 7 7 Random 7

AndroidRipper [7] 7 3 Model 7
DynoDroid [8] 3 3 Random 7
SwiftHand [9] 7 3 Model 7
PUMA [10] 7 3 Model 3

DroidMate [11] 7 3 Model 3
DroidBot [1] 7 7 Model 3

mostly based on existing Android debugging/testing utilities,
which are available on most Android devices.

The information fetched from the device can be categorized
into three sets:

1) GUI information. For each UI, DroidBot records the
screenshot and the UI hierarchy tree dumped using
UI Automator (for SDK version higher than 16) or
Hierarchy Viewer (for lower versions);

2) Process information. DroidBot monitors system-level
process status using the ps command and app-level
process status using the dumpsys tool in Android.

3) Logs. Logs include the method trace triggered by each
test input and the logs produced by the app. They can
be retrieved from the Android profiling tool and logcat.

The test input types supported by DroidBot include
UI inputs (such as touching, scrolling, etc.), intents
(BOOT COMPLETED broadcast, etc.), documents to upload
(image, txt, etc.) and sensor data (GPS signal etc.). Note that
the sensor simulation is only supported by emulation.

DroidBot provides a list of easy-to-use APIs for fetch-
ing information from the device and sending inputs to
the device. For example, developers can simply call
device.dump_views() to get a list of UI views and call
view.touch() to send a touch input to a view.

B. On-the-fly Model Construction

DroidBot generates a model of AUT based on the infor-
mation monitored at runtime. The model aims to help input
generation algorithms to make better test input choices.

Figure 2 shows an example of a state transition model.
Basically, the model is a directed graph, in which each node
represents a device state, and each edge between two nodes
represents the test input event that triggered the state transition.
A state node typically contains the GUI information and the
running process information, and an event edge contains the
details of the test input and the methods/logs triggered by the
input.

The state transition graph is constructed on the fly. DroidBot
maintains the information of the current state, and monitors
the state changes after sending a test input to the device. Once
the device state is changed, it adds the test input and the new
state to the graph, as a new edge and a new node.

State 1
GUI:

Process info:
 System: zygote, …
 Activity: HomeActivity
 Services: PushService, …

Event 1
Input:
 Type: Touching
 View:

 Command: adb	shell	input	…

Logs:
 Trace: onTouch(), startActivity(), …
 Logcat:
 <debug output>
 <error messages>

state 1

state 3

state 2

event 1

event 2

event 3

TableLayout

AdView
id/

adMobView

FrameLayout

FrameLayout

TableRow TableRow TableRow

View
id/

frm_weather

View
id/

frm_mylocati
on

… …

Fig. 2. An example of state transition graph. Note that the data in this graph
is simplified for easy understanding.

The graph construction process relies on the underlying state
comparison algorithm. Currently, DroidBot uses content-based
comparison, where two states with different UI contents are
considered as different nodes.

C. Quantifying the Effectiveness of Test Input

One problem faced by researchers and testers when con-
ducting black-box testing is the difficulty to evaluate testing
effectiveness, as the existing test coverage methods either
require the source code of AUT [3] or need to instrument
the AUT [12].

DroidBot integrates two methods to quantify the test effec-
tiveness without source code or instrumentation:

• Method tracing. DroidBot is able to print the method trace
of each test input using the Android official profiling tool.
The method trace contains the app methods and system
methods triggered by the test input. With the method
trace, we are also able to calculate the method coverage
if the total number of methods is available.

• Sensitive behavior monitoring. For malware analysis, the
number of sensitive behaviors triggered can reflect the test
effectiveness. For example, DroidBot can be used with
DroidBox [5] to monitor the sensitive behaviors triggered
by each input.

The method tracing mechanism scales better as it works
with almost any device and any app, while the sensitive
behavior monitoring mechanism requires apps running in a
certain sandbox. However, the number of sensitive behaviors
might be more intuitive in malware analysis. Both methods are
unable to give a normalized value of how effective a test case
exactly is, but they can provide meaningful statistics when
comparing different test cases on the same app.

(a) Total number of sensitive behaviors in four categories.

(b) Speed of triggering sensitive behaviors.

Fig. 3. Comparison of the effectiveness in triggering sensitive behaviors
when testing a malware with Monkey and DroidBot.

IV. USAGE SCENARIOS

A. Compatibility Analysis

One of the useful scenarios of DroidBot is compatibility
testing, which is aimed at evaluating the app’s correctness and
robustness when running on different devices. Compatibility
testing should be performed on many different commodity
devices thus system instrumentation is unrealistic. Meanwhile,
app instrumentation might also be unwanted because instru-
mented app may behave differently from the original app.

With DroidBot, a developer is able to test his/her app on
different devices without instrumentation, reaching more UI
states in much shorter time compared to Monkey. Moreover,
with the scripting feature provided by DroidBot, the developer
can customize the test input to generate.

B. Malware Analysis

Malware analysis is also a useful scenario of DroidBot. As
many malware encrypt their code or check their signature
before doing malicious things, it might be impossible to
instrument them or guarantee the consistency between the
instrumented app and the original app.

Monkey [6] is able to test malware without instrumentation,
but the random strategy of Monkey might not be efficient in
discovering the malicious behaviors. DroidBot is as easy-to-
use as Monkey but is better in app exploration as it uses a
model-based strategy. For example, if a malware does not per-
form malicious behavior until the user clicks certain buttons,
it might be difficult for randomized test input generator to
find the correct buttons, while model-based generator have the

information about the AUT fetched from the device at runtime,
thus is easier to trigger the sensitive behaviors.

Figure 3 shows the comparison to Monkey in a proof-of-
concept example of using DroidBot in malware analysis. We
selected a malware which encrypted its code as the app under
test, and used DroidBox [5] as the testing device in order to
monitor the sensitive behaviors, such as file accesses, network
accesses, data leaks, etc.

We use Monkey and DroidBot to generate test input respec-
tively. The result shows that the amount of sensitive behaviors
triggered by DroidBot is much higher than Monkey, while the
inputs generated by Monkey almost did not trigger any extra
sensitive behaviors. We inspected the test processes of Monkey
and DroidBot. The reason for Monkey’s ineffectiveness is that
the app requires users to touch two buttons in a pop-up dialog
successively to enter a malicious state. DroidBot successfully
found the buttons and touched them in around 80 seconds,
while the randomized test inputs generated by Monkey failed
to pass the pop-up dialog.

V. RELATED WORK

Test input generation for Android has been drawing re-
searchers’ interests for a long time.

Monkey [6] is the most popular tool to perform black box
testing, and it is the most light-weighted. However, the inputs
generated by Monkey are completely random, which is not ex-
tensible and easy to be intentionally bypassed. DynoDroid [8]
also generates randomized input, but it is smarter in selecting
test inputs.

AndroidRipper [7], SwiftHand [9], A3E [13] and
GUICC [14] are model-based automated test generators, while
using different methods to construct the model and generate
input based on the model. PUMA [10] is a model-based
test framework, which is programmable with PUMAScript.
SmartDroid [15] and Brahmastra [16] are focused on targeted
testing which aims to trigger certain pieces of code.

Andlantis [17] is designed for malware analysis. It is
focused on large-scale virtual machine management and able
to execute malware on multiple emulators at the same time.

DroidMate [11] is a similar approach to DroidBot as it also
emphasizes robustness and extensible strategy, however it still
needs a slight instrumentation to enable API monitoring.

Compared to these tools, DroidBot is as easy to use as Mon-
key, while providing much advanced features as most other
tools, including model-based input generation and extensible
scripting, etc.

VI. CONCLUSION

This demonstration presents DroidBot, a lightweight test
input generator for Android apps. DroidBot is able to test an
Android app on almost any device with minor environment
requirements. It is easy to use, because on one hand, it is
extensible based on a set of high-level APIs and a state
transition model constructed on the fly, on the other hand,
it provides a set of utilities to evaluate the test effectiveness.
Besides regular testing tasks, DroidBot can also be used in

scenarios including compatibility testing, malware analysis
and other cases where instrumentation is unwanted.

ACKNOWLEDGMENT

This work is partly supported by the National Key Research
and Development Program under Grant No.2016YFB1000105
and the National Natural Science Foundation of China under
Grant No.61421091.

REFERENCES

[1] honeynet, “Droidbot: A lightweight test input generator for android,”
https://github.com/honeynet/droidbot, 2016, accessed: 2016-11-10.

[2] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input gen-
eration for android: Are we there yet? (e),” in Proceedings of the
2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), ser. ASE ’15. Washington, DC, USA: IEEE
Computer Society, 2015, pp. 429–440.

[3] V. Roubtsov, “Emma: a free java code coverage tool,” 2006.
[4] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,

and A. N. Sheth, “Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’10, 2010, pp. 393–407.

[5] A. Desnos and P. Lantz, “Droidbox: An android application sandbox for
dynamic analysis,” 2011.

[6] A. Developers, “Ui/application exerciser monkey,” 2012.
[7] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and

A. M. Memon, “Using gui ripping for automated testing of android
applications,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE 2012, 2012,
pp. 258–261.

[8] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for android apps,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE 2013, 2013,
pp. 224–234.

[9] W. Choi, G. Necula, and K. Sen, “Guided gui testing of android apps
with minimal restart and approximate learning,” in Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, ser. OOPSLA
’13, 2013, pp. 623–640.

[10] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma:
Programmable ui-automation for large-scale dynamic analysis of mobile
apps,” in Proceedings of the 12th Annual International Conference on
Mobile Systems, Applications, and Services, ser. MobiSys ’14, 2014, pp.
204–217.

[11] K. Jamrozik and A. Zeller, “Droidmate: A robust and extensible test
generator for android,” in Proceedings of the International Conference
on Mobile Software Engineering and Systems, ser. MOBILESoft ’16,
2016, pp. 293–294.

[12] ylimit, “androcov: measure test coverage without source code,”
https://github.com/ylimit/androcov, 2016, accessed: 2016-11-10.

[13] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of android apps,” in Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications, ser. OOPSLA ’13, 2013, pp.
641–660.

[14] Y.-M. Baek and D.-H. Bae, “Automated model-based android gui
testing using multi-level gui comparison criteria,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE 2016, 2016, pp. 238–249.

[15] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou, “Smart-
droid: An automatic system for revealing ui-based trigger conditions in
android applications,” in Proceedings of the Second ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices, ser. SPSM
’12, 2012, pp. 93–104.

[16] R. Bhoraskar, S. Han, J. Jeon, T. Azim, S. Chen, J. Jung, S. Nath,
R. Wang, and D. Wetherall, “Brahmastra: Driving apps to test the
security of third-party components,” in Proceedings of the 23rd USENIX
Conference on Security Symposium, ser. SEC’14, 2014, pp. 1021–1036.

[17] M. Bierma, E. Gustafson, J. Erickson, D. Fritz, and Y. R. Choe,
“Andlantis: large-scale android dynamic analysis,” arXiv preprint
arXiv:1410.7751, 2014.

