
PERUIM: Understanding Mobile Application Privacy with
Permission-UI Mapping

Yuanchun Li, Yao Guo∗, Xiangqun Chen
Key Laboratory of High-Confidence Software Technologies (Ministry of Education)

School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
{yli, yaoguo, cherry}@pku.edu.cn

ABSTRACT
Current mobile operating systems such as Android employ
the permission-based access control mechanism, but it is dif-
ficult for users to understand how and why the permissions
are used within a particular application. This paper introduces
permission-UI mapping as an easy-to-understand represen-
tation to illustrate how permissions are used by different UI
components within a given application. Connecting UI com-
ponents to permissions helps users to understand the purpose
of permission requests and also makes it possible to illus-
trate permission requests in a fine-grained manner. We pro-
pose PERUIM to extract the permission-UI mapping from an
application based on both dynamic and static analysis, and
represent the analysis results with a graphical representation.
Experiments on popular mobile applications demonstrate the
accuracy and applicability of the proposed approach.
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INTRODUCTION
In recent years, mobile applications (apps in short) have seen
widespread adoption, with over one million apps available for
download in both Google Play and Apple App Store, while
billions of downloads have been accumulated [33, 34]. Many
apps regularly request to access private user information such
as contact lists, locations and photos. Some of these requests
are warranted and necessary, while others may be exploited
for malicious or advertising purposes.

As the most popular mobile operating system, Android em-
ploys a permission-based mechanism to control whether an
app is allowed to access certain sensitive resources. When a
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user installs an app, he or she has the opportunity to review the
list of permissions requested by the app and either agree to in-
stall, or cancel the installation if the permissions are excessive
or objectionable [10].

Beginning in Android 6.0, users are able to grant permissions
to an app at runtime after the app has been installed [6]. It also
gives the user more fine-grained control over an app’s ability
to access sensitive data. For example, a user could choose to
grant a camera app the permission to access camera but not
the permission to access location. The user can also revoke
each permission at any time in a later time.

Many accesses to sensitive data are undesirable from the end
users’ perspective. Previous work has shown that users are
willing to block accesses to protected resources a third of the
time under realistic circumstances [32]. However, it is difficult
for most end users to understand how the Android permission
system works; controlling the permissions for each app will
be even more difficult [10].

On one hand, users often feel difficult to understand why
and how each permission is required by the apps. Many re-
searchers have proposed ideas about connecting permissions
to other features understandable by users. WHYPER [19]
and AutoCog [21] mapped permissions to textual descrip-
tions, however the descriptions provided by developers are not
security-centric and are sometimes significantly deviated from
the permissions [37]. Lin et al. [14] and Wang et al. [30] con-
nected permissions to third-party libraries or code segments in
order to understand the purpose of permission requests. How-
ever, these approaches are mostly more developer-oriented
than end-user-oriented.

On the other hand, each permission requested by an app might
be used for multiple purposes within the same app. For ex-
ample, location data can be used for both navigating and ad-
vertising. It would be desirable if a user can choose to grant
location permission to the navigating purpose in an app, while
disallowing it from using location for advertising purposes.
Currently, not only there are no mechanisms to control these
accesses in such a fine-grained manner, there are even no intu-
itive ways to represent such kind of situation and illustrate it
to users in a straightforward representation.

In order to help end users better understand the permissions
requested in an app, especially on why and how these permis-
sions are used, this paper introduces permission-UI mapping,
which connects permissions with user interface (UI) compo-
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Figure 1. Two screenshots from the com.devexpert.weather app.

nents. Our goal is to present users how each permission is
used within an app based on the granularity of UI components,
such that a user can easily tell which UI components are using
certain permissions.

Compared to previous approaches, a permission-UI mapping
offers several benefits to help users understand permission
requests. First, UI is more intuitive than libraries or code seg-
ments (e.g., classes). Users might feel easier to relate or infer
the functionality of a UI component based on experiences or
common sense. For example, if we show location is used in an
advertising UI, the user can easily recognize the advertisement
and realize whether it should be allowed. Second, UI provides
a finer granularity such that users can distinguish between the
permission requests for different purposes within the same
app. Finally, it also gives us the potential to control permission
accesses based on UI components, however this is out of the
scope of this paper.

For example, Figure 1 shows two screenshots of the “Weather
& Clock Widget Android” app (whose package name is
com.devexpert.weather.). The app requests the LOCATION
permission, which is perfectly fine as the app offers weather
and map services, both of which are location-based. However,
other components within the app also use the location informa-
tion. For example, the advertisements displayed on the bottom
of the screens are typically location-based too.

In order to make users aware of this situation, we can analyze
the permission-UI mapping and present the permissions used
in an app with UI-based visualization, as depicted in Figure 2.
The figure shows how each permission is used by each UI
component. We can also distinguish between which permis-
sions have been accessed in order to render the UI component,
and which permissions will be accessed if you click the UI
component (if it is clickable). We choose to group the map-
pings by permissions instead of UI components, because there
are only a few sensitive permissions concerned by users.

With the illustration in the figure, users can easily understand
that the LOCATION permission is used by different compo-
nents within the app, and may also take further actions to
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Figure 2. An example of permission-UI mapping. Note that this is a mock-
up of the actual interface, the boxes and numbers are manually added for
illustration only.

control whether the permission should be accessed by each UI
components.

In order to meet this goal, this paper proposes PERUIM, a
mechanism to generate and visualize permission-UI mappings
automatically. The key techniques proposed in PERUIM in-
clude: extracting UI components with an app through dynamic
testing of the app on a customized Android image to form a
UI transition graph, extracting permissions required by each
UI component using both dynamic and static analysis, and
inferring permission-UI mappings based on the UI transition
graph.

To evaluate the applicability and scalability of PERUIM, we
tested PERUIM on 200 popular Android apps from Google
Play. PERUIM successfully analyzed 164 of them, while
most failures were due the inherent limitations of automated
dynamic analysis to handle special inputs such as logins.

We manually evaluated the accuracy of PERUIM on 10 popular
apps from Google Play. PERUIM was able to extract 215
permission-UI mapping relations from the 10 apps. We then
manually labeled the correct ones to examine its accuracy.
The result shows that PERUIM achieves a 76.75% overall
precision in inferring which permissions are used by each UI
component. Although there is still space for improvement, the
accuracy of PERUIM is better than most existing permission
explanation approaches based on NLP.

This paper makes the following research contributions:
• We introduce the idea of permission-UI mapping to explain

the permissions in Android apps. Compared to textual
descriptions and code-level concepts, UI-based descriptions
are arguably easier to understand for end users.
• We propose PERUIM, a tool taking advantage of both

dynamic and static analysis to generate and visualize
permission-UI mappings automatically, which can be di-
rectly applied on most popular apps.
• We evaluated PERUIM on popular Android apps and

demonstrated that the permission-UI mappings produced by
PERUIM can describe fine-grained permission requests in
Android apps with an acceptable accuracy.
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RELATED WORK

Permission Description
Many researchers have proposed approaches to help users
or developers understand permissions used in Android apps.
They can be categorized into text-description based, library-
based, code-based and API-based approaches.
WHYPER [19] and AutoCog [21] apply NLP (natural lan-
guage processing) techniques to analyze textual descriptions
of apps and connect an app’s descriptions to its requested
permissions. The textual descriptions are easy for users to
understand, but most descriptions cannot be fully mapped to
permissions. One of the main reasons is that the descriptions
are often provided by developers who do not have the incentive
to explain the permission requests in detail.
Some approaches proposed the idea of understanding the pur-
pose of permission requests based on code-level entities such
as third-party libraries used in apps. Lin et al. [14, 15] in-
troduced the idea of inferring the purpose of a permission by
analyzing what third-party libraries an app uses. They cate-
gorized the purposes of several hundred third-party libraries
(advertising, analytics, social network, etc.) and used crowd-
sourcing to ascertain people’s level of concern for data use
(e.g. location for advertising versus location for social net-
working). Wang et al. [30] extracted the textual information
from custom code, such as method names, variable names
and annotations, then applied supervised machine learning to
predict the purposes of these code.
Zhang et al. [37] proposed the idea of automatically generat-
ing security-centric descriptions based on program analysis.
They extracted security behavior graphs as high-level program
semantics and applied natural language generation techniques
to generate permission-related textual descriptions. However,
the generated descriptions are about the data flow behavior in
the app code, which may be too abstract for normal users.
There are also approaches aimed at generating API-permission
mapping relations, such as PScout [2], STOWAWAY [9] and
COPES [3]. They are very helpful for developers and re-
searchers. Our work also makes use of the API-permission
mapping result of PScout to help extracting permissions
through static analysis. However these approaches are not
intended for normal users because APIs are not designed for
them.

Permission-UI Relation Analysis
Many researchers have explored or considered the relation
between permissions and user interface in Android apps. Most
of them are interested in the gap between UI and permissions,
which might indicate stealthy behaviors, while others attempt
to identify sensitive input views that can be considered as
sources in taint analysis.
AsDroid [12] identifies the permissions related to UI compo-
nents using static analysis and detects malware by detecting
mismatches between the permissions and the text extracted
from UI components. AppIntent [36] regards the data transmis-
sions without user intention as likely privacy leakage. For each
data transmission, AppIntent is able to provide a sequence of
GUI manipulations corresponding to the events that lead to
the transmission. Rubin et al. [25] also used static analysis

to detect covert network accesses, in which they consider the
network accesses without user awareness as covert.
Another type of related work focused on the detection of sen-
sitive UI components, such as SUPOR [11] and UIPicker [18].
They detect sensitive input UI views in apps through machine
learning and identify their related code in order to facilitate
taint analysis. They regard user inputs as sensitive informa-
tion and connect the input windows to the corresponding code
entries, in order to detect leakage of user input through taint
analysis. Their main goal is to estimate the sensitivity of UI
components, instead of mapping UI components to permis-
sions.

Permission Isolation
The ultimate goal for users after understanding permissions is
to control the permission accesses, which requires isolating
permissions for each UI components.
The first type of permission isolation is library isolation. Most
of these approaches focus on isolating libraries, especially
ad libraries, to avoid permissions granted to trusted apps
used by untrusted libraries. Approaches such as AdSplit [27],
AFrame [38], NativeGuard [29] and AdDroid [20] put ad li-
braries in a separated process, while NativeGuard [29] focuses
on native libraries. Compac [31] and FlexDroid [26] provided
in-app privilege separation where libraries and the host app
run in the same process.
The concept of UI-based isolation has been proposed by Roes-
ner et al. [24]. They introduced user-driven access control
as a mechanism of permission granting in modern operating
system. They also proposed User Interface Toolkit Mecha-
nisms [22], a programming toolkit to help developers design
apps whose permissions are isolated at the UI component
level. LayerCake [23] isolates user interface (UI) libraries
from its host app to support secure third-party UI embedding
on Android.
To help users make permission control at the UI compo-
nent level is attractive if they can understand the permissions
granted to each UI component. Our work on permission-UI
mapping illustrates the permissions used by each UI com-
ponent, which can be used as the foundation of UI-based
permission control.

OUR APPROACH
This paper proposes PERUIM, an automated approach to gen-
erate permission-UI mappings in order to help users under-
stand the permission requests within an Android app. Figure 3
shows the overall process of our approach. Given an Android
app, PERUIM works in the following steps:
1. Dynamic data extraction. We first extract the UI data (in-

cluding UI states and UI events), runtime permission ac-
cesses and runtime event handler callbacks. Dynamic anal-
ysis could be done manually to ensure higher coverage or
automatically if applied to a large number of apps.

2. UI modeling. Using the extracted UI data, we build a UI
state transition graph as a formal representation of the re-
lationship among the UI states in a given app. It is based
on a graph-based UI model, whose goal is to mend the gap
between users’ knowledge and abstract permission requests.

684

SESSION: SECURITY AND PRIVACY II



Android App

Runtime UI 
data

Runtime 
permissions

Conservative 
permissions

UI-based 
permission 
description

Runtime 
callbacks

UI transition 
graph

Dynamic 
Analysis

Static 
Analysis

GUI 
modelling

Visualization

Figure 3. Overview of the PERUIM approach.

3. Permission mapping. In this step, we use both dynamic
and static analysis to map the permissions to the UI model
generated in Step 2. The UI events are where permissions
meet the UI model. After this step, we have a UI state
transition graph whose edges are tagged with permissions.

4. Visualization. Finally, we convert the permission-UI map-
ping model to a graphical representation similar to the mock-
up shown in Figure 2. For each UI component, we inform
users about which permissions are used to render its content
and which permissions it will use.

GUI Modelling
User interface (UI) is the space where interactions between
humans and machines occur [35]. In Android, an app’s UI
is everything that the user can see and interact with [7]. App
developers design UI to help users understand the features of
their apps, and users interact with the apps through the UI.

We assume that users are aware of the purpose of their in-
teractions. Actually, unlike the permissions and code which
can be confusing or easily obfuscated, developers typically
would try their best to attract users by making the UI simple
and easy-to-understand. Based on the assumption, we believe
UI is one of the best choices to describe the often-confused
permission requests.

UI States, Components and Events
Each UI page (or screenshot) presented in an Android app has
a structured layout. All UI elements in an Android app are
built using View and ViewGroup objects. A View is an object
that draws something on the screen that the user can interact
with. A ViewGroup is an object that holds other View objects
in order to define the layout of the interface. The Views and
ViewGroups form a tree hierarchy, where Views are leaf nodes
responsible for input controls and content rendering.

An app can be viewed as a combination of many states, each
of which serves different functionality or renders different
content. The tree structures of different states differ from each
other, and the tree structures of the same state are similar. Thus
we use the tree structure of a UI page to identify a UI state,
and split the nodes in the tree structure into UI components.

DEFINITION 1. A UI state represents a visual state of an
Android app, which is shown to users in some situations, serv-
ing functionality or displaying content. A UI state can be
represented with a tree data structure, where nodes are View-
Groups and Views.

TableLayout

AdView
id/adMobView

FrameLayout

FrameLayout

TableRow TableRow TableRow

View
id/frm_weather

View
id/frm_mylocation

… …

Figure 4. Simplified UI hierarchy of the screenshot(left) in Figure 1.

A UI state can be split into several UI components, each of
which is responsible for serving one functionality or rendering
one type of content.

For example, Figure 4 shows the simplified UI tree hierarchy
of the screenshot (on the left) in Figure 1. The UI state rep-
resented by the tree hierarchy serves six functionalities and
renders one content, for example the id/frm_weather node is a
UI component representing the “Weather” functionality and
the id/adMobView component renders advertisement.

Users are able to understand the meaning of each component
in a UI state and decide how to interact with it. The way for
users to interact with an app is using touchscreen gestures,
such as touching, sliding and pressing buttons.

Android apps react to the gestures by registering event listen-
ers to the corresponding UI components. After registering, the
UI component will keep monitoring gestures and capturing
the gestures if matched. Each event listener will have to imple-
ment gesture handling methods, which are callback methods
invoked once a gesture is captured. We regard a UI event as
a gesture which triggers a callback method. Normally a UI
event will lead to transition from one UI state to another.

DEFINITION 2. A UI event is a user’s interaction that is
handled by an Android app. It can be represented as a tuple
E =< Gesture,Component,Handler > where Gesture is the
physical operation performed by a user, Component is the
UI component that handles the gesture, and Handler is the
callback method triggered by the UI event.

For example, in the UI state shown in Figure 4, if the user want
to learn about weather, he or she would click the “Weather”
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UI component, by using a Touch gesture. In order to handle
the gesture, the app should register an event listener to the
“Weather” UI component. The Touch gesture, the touched
“Weather” UI component and the onClick method together
represent a UI event. The code skeleton about registering the
event listener is shown below:
w e a t h e r _ b t n = f indViewById ( " i d / f rm_wea the r " ) ;
w e a t h e r _ b t n . s e t O n C l i c k L i s t e n e r (
new O n C l i c k L i s t e n e r {

vo id o n C l i c k ( View view ) {
/ / h a n d l e t h e e v e n t
/ / s t a r t an A c t i v i t y t o d i s p l a y w e a t h e r

}
}

)

UI Transition Graph
The user interface of an app can be viewed as a state machine.
Each state is a page seen by users, and each edge is a UI that
triggers the transition from one state to another. We define
a structure named “UI transition graph” to represent the UI
model for an app.

DEFINITION 3. The user interface of an Android app is
represented using a directed graph G = (N,E) called UI tran-
sition graph. Each node n ∈ N represents a UI state. The
tree structures of the nodes in N are different from each other.
Each edge e ∈ E represents a UI event, which means the UI
event leads to a state transition from the source node state to
the target node state.

For example, Figure 5 shows a partial UI transition graph of
the motivating example app. There are four nodes in the partial
UI transition graph, representing four UI states including the
Idle UI state, Menu state, Weather state and the Ad state. The
edges represent the UI events leading to transitions between
UI states, for example the edge from state 2 to state 3 means
that users can switch from the Menu state to the Weather page
by touching (clicking) the “Weather” button.

So far we have modeled the GUI of an Android app with
the UI transition graph, which serves as the bridge between
UI and permissions. In the following steps we will connect
permissions to the UI transition graph.

Permission Mapping
After constructing the UI transition graph of an Android app,
PERUIM connects permissions to UI by mapping the permis-
sions to the corresponding UI events.

Choosing UI events as the bridge between permissions and UI
is based on the insight that the control flow of an app begins
at event handlers. Since Android is event-driven, an app runs
in a transient state when there is no event and starts complex
logic when handling an event, thus most permission accesses
would be triggered by UI events.

We use both dynamic and static analysis to generate precise
and conservative mapping relations. Specifically, using dy-
namic analysis to extract “precise” results, i.e. permissions
required at runtime, and using static analysis to generate “con-
servative” results, i.e. permissions possibly required under
other conditions (in other branches that are not executed).

State 1 State 2: Menu 

State 3: Weather State 4: Ad 

start app

press BACK

pres
s B

ACK

To
uc

h “
Wea

the
r”

press 
BACK

Touch  
Ad

Figure 5. A partial UI transition graph for the com.devexpert.weather
app.

Runtime Permission Mapping
We use dynamic analysis to extract runtime permission ac-
cesses. We instrumented the Android system to monitor per-
mission accesses while running the app. Android checks per-
missions once there are sensitive APIs invoked, thus we can
monitor the permission requests by logging at the permission
checkpoints.

To connect the runtime permission requests to UI states and
UI events, we also monitor the UI rendering behaviors and UI
input events. The permissions accessed between a UI event
and the rendering of its corresponding UI state are regarded as
the permissions mapped to the UI event.

However, there are some background permission requests that
may be mapped to UI events by mistake. For example, a navi-
gation app running a background service to keep the location
updated (requires the Location permission), and a communi-
cation app running a push service to frequently check arrived
new messages (requires the Internet permission). We eliminate
the incorrectly mapped permissions based on the observation
that background permission accesses are often periodic. One
reason is that some of the permission-related APIs are required
to be used in a periodic manner, for example the location API
LocationManager.requestLocationUpdate requires an
argument rate, which is the frequency of location updates,
and many background services are programmed in periodic
patterns, for example:

w h i l e ( True ) {
/ / check p e r m i s s i o n
. . .
/ / s l e e p a few s e c o n d s
s l e e p ( ) ;

}
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Thus most of the background permission requests are repeated
periodically, which are easier to identify.

We identify these background permission requests by detecting
periodic patterns. By tagging the runtime permission requests
with timestamps, the problem of finding background permis-
sions is converted to a problem of finding partial periodic pat-
terns in time series in presence of noises and imprecise time
information. Many researchers [17, 13] have attempted to ad-
dress this problem. We directly applied one of the algorithms
to detect and eliminate background permission requests.

The advantages of runtime permission extraction include:
• The runtime permissions are accurate because they are actu-

ally accessed, in comparison some of the static permissions
are probably not reachable.

• Dynamic analysis is good at handling asynchronous calls,
reflections and IPCs (inter-process communications) etc.,
which are difficult for static analysis.

However, the effectiveness of dynamic analysis relies on the
coverage. It cannot extract permissions in the un-traversed
code. For example, if the permission access code is in one
branch and our dynamic analysis took another branch, the
permissions will simply be missed by dynamic analysis, while
in reality the permissions are related to the UI if the branch
condition changes.

Static Permission Analysis
As a complement to dynamic analysis, we add static analysis
to extract the permission requests missed during dynamic
analysis.

Static program analysis is conservative because it analyzes
all branches and considers all possible execution paths. Com-
pared to dynamic analysis, the effectiveness of static analysis
is not influenced by the branch conditions.

Android apps are event-driven. Unlike normal Java programs,
Android apps have multiple entry points instead of a single
main method, and each entry point is used to handle an event.
The classes that handle the events are called event listeners
and the methods handling the events are called event handlers.
We mentioned earlier that user interactions are UI events sent
to Android apps and the apps react to the events by registering
event listeners.

Our static analysis is based on the runtime data extracted dur-
ing dynamic analysis. We record the invocations of event
handlers when running the app, thus we know the entry point
methods corresponding to each user interaction. By construct-
ing the call graph from the extracted entry point method, we
are able to extract code related to the user interaction. The
conservativeness is guaranteed in the call graph construction
process.

After extracting the code related to a user interaction, we are
able to extract the APIs invoked from the handler method.
APIs are provided by the Android operating system and their
required permissions are static. We use the permission-API
mapping relations from PScout [2] and find the permission list
for each UI event.

Note that the permissions found using static analysis are not
completely conservative due to the weakness of static analysis.
Some features in Java or Android are difficult for the static
analyzer to deal with, such as asynchronous calls, IPC and
reflection, which are frequently used in Android apps.

By combining the static analysis results with the dynamic anal-
ysis results, we get an accurate and conservative permission
list for each UI event. So far, we have connected permissions
to our UI model (UI transition graph), which can be used to
generate UI-based permission description in the next step.

Visualization
The goal of our approach is to help users better understand the
permissions in Android apps, thus we visualize our result and
generate a UI-based permission description.

In this step, we use the UI transition graph as the representation
of the UI of Android apps and map permissions to entry-point
methods through program analysis. To mend the gap between
UI and permissions, user events are used as the bridge between
them. First, the user events are represented as the edges in the
UI transition graph, because the user events lead to transitions
between UI states. Then, the user events are mapped to entry-
point methods, because the entry-point methods are what event
listeners use to handle user input. Thus we are able to map
permissions to the UI events and generate an artifact called
permission-tagged UI transition graph, which is an extension
of the UI transition graph, with the edges tagged with the
permissions triggered by the UI events.

Unlike the Android system and in most app markets, where
a list of requested permissions are shown to users before in-
stalling an app, PERUIM shows a list of permissions as well as
the information on how the permissions are related to different
UI components. For each permission, we tell users two things:
• Which UI components will access the permission if a user

interacts with it, i.e. “who will access” the permission. For
example, clicking a “Weather” button will use the Location
permission.
• Which UI components are rendered after the permission is

accessed, i.e. “who accessed” the permission. For example,
an advertisement view accessed the Location permission.

For the “who will access” set, the permission-tagged UI transi-
tion graph can be directly used to calculate which permissions
will be accessed after each user interaction. For example, an
edge in the UI transition graph is tagged with the Location per-
mission, and the gesture related to the UI event on the edge is
a Touch gesture on the “Weather” view (just like the edge from
state 2 to state 3 in Figure 5), thus the “Weather” view belongs
to the “who will access” set of the Location permission.

The “who accessed” set cannot be directly inferred from the
permission-tagged UI transition graph, thus we use data flow
analysis to determine if sensitive data flows to the content of
UI components.

Android provides a set of view content updating APIs, which
are used for rendering dynamic information to users. The con-
tent is passed to these UI components as arguments of content
updating APIs. Take the weather View as an example, the
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Table 1. Common view content updating APIs in Android.
Class Methods

android.view.View
onDraw
setBackground
setBackgroundResource

android.widget.TextView setText
append

android.widget.Toast setText
makeText

android.webkit.WebView
loadData
loadDataWithBaseURL
loadUrl

android.widget.ImageView

setImageBitmap
setImageDrawable
setImageIcon
setImageResource
setImageURI

app gets the user’s location, sends it to server and receives a
response containing the weather information, and invokes the
TextView.setText method to display the weather informa-
tion to the user.

We categorize the UI components in a UI state into two sets:
static views that must have not used permissions (MUST_NOT
set) and dynamic views which may have used permissions
(MAY set). The MUST_NOT set can be calculated through
a constant propagation analysis, i.e. checking if the argu-
ments of the content updating APIs are constant. For example,
the content of a TextView is set by the TextView.setText
method, and we notice that the argument of the method is a
constant string, thus we can conclude that the TextView is
a static view that must have not used any permissions. The
content updating APIs considered in PERUIM are shown in
Table 1.

Note that we had another option in categorizing the views in
one UI state, i.e. categorizing them to the MUST set that have
used permissions and the MAY_NOT set that possibly have not
used permissions. This could be done through taint analysis,
i.e. marking sensitive data with taint tags, propagating the
taint tags along program execution and checking whether the
arguments of content updating APIs are tainted. We did not
use this method because both static taint analysis [1] and
dynamic taint analysis [8] lack scalability and accuracy, and
also because we want to present a more conservative result to
the users.

Finally, after calculating the who will access and the who
accessed sets, we are able to generate visualized permission
descriptions similar to the graph shown in Figure 2.

IMPLEMENTATION

UI Extraction
To extract the UI hierarchy, we make use of Android debug-
ging tool ADB (short for Android Debug Bridge [4]) and
Hierarchy Viewer [5].

Hierarchy Viewer is able to dump the layout of the current UI
state on the screen, which is organized in a tree structure. Each
UI component is a node in the tree hierarchy and is labeled

with the resource ID, text and bounds. We can easily convert
the Hierarchy Viewer result to our UI state nodes.

To extract the user interactions, we instrumented the Android
system to monitor the UI events captured during runtime. We
are interested in two things: which UI component handles the
user interaction and which UI component is rendered after the
user interaction.

When a user gesture is sent to a device, the device gener-
ates a TouchEvent with the coordinates on the screen. The
TouchEvent is dispatched from the top down. At first, the
TouchEvent is captured by the root node, then the root
node dispatches the TouchEvent to its child nodes by call-
ing dispatchTouchEvent. The TouchEvent stops being dis-
patched until it is handled by a node. We instrumented the
dispatchTouchEvent method in the View class to capture
the position of user gesture and find which UI component
handles the gesture.

Similarly, the UI rendering process also follows a top-down
manner. The parent nodes render themselves by calling the
draw method and then trigger the rendering of their children.
To monitor when and which UI components are rendered, we
also instrumented the View.draw method.

After extracting the runtime data, we have collected a sequence
of UI states and events. Finally we generate the UI transition
graph by eliminating redundant UI states and connecting states
with the corresponding events.

Permission Extraction
As stated earlier, we use both dynamic analysis and static
analysis to extract the permission requests of Android apps.

We first extract runtime permission requests through dy-
namic analysis. In Android, the permission checking
process is controlled in the PackageManagerService
class. We instrument the checkPermission meth-
ods and the checkUidPermission methods in the
PackageManagerService class, thus each permission re-
quest will be logged at runtime.

We use the open-source test input generation tool Droid-
Bot [16] to perform dynamic analysis automatically. DroidBot
remembers the UI states it reached and the UI components
it touched and tries to explore as many UI states as possible.
We extend DroidBot to record UI states and events, which are
necessary for constructing the UI transition graph.

The effectiveness of PERUIM relies heavily on the coverage of
dynamic analysis. The more states reached in dynamic analy-
sis, the more detailed are the UI-based permission descriptions.
However, improving test coverage is not our main goal, while
the descriptions generated using DroidBot are helpful although
it cannot achieve 100% coverage.

Then we generate a more conservative result using static anal-
ysis as a complement to dynamic analysis. As stated above,
Android apps implement event listeners to handle user inputs.
The event listeners are registered to the corresponding Views.
When a View captures a user input, it checks if there are lis-
teners registered, and invokes the handler method if there are
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Figure 6. Example visualization interfaces of permission-UI mapping,
including a web interface (left) and a mobile interface (right).

registered listeners. We modify the View class to record the
handler methods registered to the View and invoked at runtime.
These methods are entry-points of our static analysis.

We extend Soot [28] to construct the call graph from the entry-
point methods and extract the APIs invoked in the methods.
Finally we map the APIs to permissions using the mapping
table from PScout [2]. To improve scalability, we skipped alias
analysis because it is memory-hungry and time-consuming.

Permission-UI Mapping Visualization
In order to help users understand the permission-UI mapping,
we implemented two prototypes to visualize the result of PE-
RUIM: one using webpages and an Android app. Figure 6
shows the example visualization interfaces of PERUIM gener-
ated for the com.devexpert.weather app.

The web interface is designed to give users a big picture of the
permission-UI mapping. It mainly contains a table in similar
format with the mock-up interface in Figure 2. Each row in
the table represents a permission, and each table cell contains
the images of the UI components related to the permission. In
order to help users understand the UI components, the web-
page also presents a set of selected screenshots which contain
the UI components (screenshots are omitted in Figure 6).

Due to the smaller screen, the mobile app interface provides
an interactive way for the users to view the mappings grouped
by UI components. As shown in Figure 6, users are able
to select a screenshot and interact with it by touching a UI
component, then the app will show the permissions related to
the UI component and a screenshot of the UI state that will be
triggered by the touch event.

EVALUATION
We then evaluate PERUIM with popular Google Play apps.
We conduct experiments to answer the following research
questions:
• How is the applicability and scalability of PERUIM?

• How many permissions could be explained by the PERUIM
descriptions?

• Is the permission description generated by PERUIM accu-
rate?

Table 2. Applicability of PERUIM. Note that the “Fail(D)” and “Fail(S)”
columns mean the amounts of failures in dynamic analysis and static
analysis respectively.

Category App count Fail(D) Fail(S) Success
Weather 50 4 0 46
Transportation 50 14 1 35
Tools 50 8 2 40
News 50 7 0 43
Total 200 33 3 164

Experiment Setup
We implemented PERUIM using Java and Python. The ROM
we customized is Cyanogenmod 11 (based on Android 4.4.4).
We ran experiments on an 8-processor 32GB-RAM machine
with Ubuntu 14.04, OpenJDK 1.7.0_79 and Python 2.7.9. The
Android device we used to run dynamic analysis is Nexus 5
Hammerhead.
The apps we selected are popular apps from Google Play
downloaded in November 2015. We selected four categories
to perform our experiments, including Tools, Weather, Trans-
portation and News & Magazines. The apps are ranked in
descending order by the number of reviews, and we chose
apps starting from the most reviewed ones. After removing
the incompatible apps that could not run on our device and the
out-of-date apps that are no longer supported by developers,
we use 50 apps in each of the four categories, respectively.

Applicability and Scalability
The scalability of our work depends on the automated dynamic
analysis and static analysis used in PERUIM. We analyzed the
apps in four categories and found that PERUIM successfully
generated UI-based permission descriptions for more than 80%
of them. The failures are due to multiple reasons in dynamic
analysis and static analysis, as shown in Table 2.
The main restriction of PERUIM is automated dynamic anal-
ysis, where more than 16% of our tested apps failed. We
manually checked the reasons of failure, and found that most
of them are due to special inputs, because dynamic analysis
cannot bypass some states of app that need special user input
(login screen for instance). To solve these issues, we may
need to run dynamic analysis manually as there are no mature
automated solutions to deal with login screens. However, we
leave this as future work as these failures are not a significant
limitation of PERUIM.
Static analysis does not affect the applicability significantly,
as only 1.5% of our apps failed in static analysis (mostly due
to obfuscation). Even when it fails in static analysis, PERUIM
is still able to finish, although giving a less complete result.
We also evaluated the time overhead of PERUIM. The time
spent on dynamic analysis is under the control of the analyzer
(i.e. DroidBot). One may spend more time on dynamic analy-
sis or even test the app manually if he or she wants a higher
coverage. In our experiment, we limit the automated dynamic
analysis time to 5 minutes.
The time overhead of static analysis is about 23 seconds on
average, which is acceptable for large-scale analysis, given
the fact that highly precise static analysis tools such as Flow-
Droid [1] are often computationally- and memory-intensive.
We made some simplifications to improve scalability, such as
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skipping alias analysis and only considering the methods re-
lated to UI. Such simplifications do not significantly affect the
result of static analysis, but speed up our analysis significantly.

Permission Coverage
We use this experiment to see how many permissions could
be explained by PERUIM. We take the permissions listed
in the manifest file as all permissions we need to explain,
and we regard the permissions mapped to UI components as
the explained ones. The coverage of UI-based permission
description is calculated by:

Coverage =
# Explained permissions

# All requested permissions

We found that PERUIM achieves a 61% coverage on average,
and around 20% of the apps got a higher-than-90% coverage.
We manually checked the apps with a low coverage and found
that the main reasons include:
• The app requests more permissions than it uses, which is

due to mistakes made by developers. Android apps declare
requested permissions in the manifest file, while some de-
velopers just copy and paste the configurations from other
apps regardless of the least permission set of their apps.

• Some functionalities cannot be reached in dynamic analysis,
the automated test input generation tool did not reach some
sensitive UI states thus the permissions are not triggered.
The coverages of these apps could be further improved using
a manual dynamic analysis.

Accuracy
We then evaluate the accuracy of PERUIM on mapping per-
missions to UI components.
We selected 10 popular apps from the four categories, and use
PERUIM to generate permission-UI mappings for 5 screen-
shots in each app (Note that similar UIs are skipped). Then
we manually check the results and label the correct mappings.
The overall precision of permission-UI mapping is shown in
Table 3, and the detailed number of mappings and number of
correct mappings for the 10 apps are shown in Table 4.
We can see the average precision of PERUIM is 76.75%. How-
ever, there are also many states that only have a precision of
around 50%. The reason is mainly due to the conservative
approach used in static analysis when generating the accessed
sets. For example, an app accessed a set of permissions (a
Location permission for instance) and entered a new UI state,
which contains multiple dynamic UI components (such as a
“News” view and an advertisement view), then PERUIM will
assume all of the dynamic UI components have accessed the
permissions (both the “News” view and the advertisement view
have accessed Location permission in our example), which is
clearly a conservative result.
When comparing the results on the will access sets and the
accessed set respectively, we calculated the precision of map-
pings on both will access sets and accessed sets and the result
is shown in Table 3. The overall precision on two sets indicate
that PERUIM gains a higher precision on will access sets,
which is about 87%.

Table 3. The overall precision of Permission-UI mapping.
will access set accessed set overall

# mapping 141 74 215
# correct 123 42 165
precision 87.23% 56.77% 76.75%

Note that we did not calculate the recall for the precision-UI
mappings, because it is hard to calculate how many mapping
relations are missed by PERUIM as there is no ground truth
available. Furthermore, we can improve the mapping coverage
of PERUIM by extending the duration of dynamic analysis or
even doing dynamic analysis manually. We will investigate
this direction in our future work.

FUTURE WORK

User Study
The goal of PERUIM is to help users better understand the
permission requests of apps, thus we plan to add a user study
to evaluate the effectiveness of PERUIM in explaining per-
missions to users. We plan to select UI-based permission
descriptions generated from popular apps and recruit Android
users to make permission access control choices with or with-
out the UI-based permission descriptions. The effectiveness of
PERUIM could be examined based on whether the users will
make different (and better) choice after reading our UI-based
permission descriptions.

Abnormal Behaviors
Some of the UI-based permission descriptions are interesting
and even surprising. For example, a memory-clean app re-
quested the permission to access location when it was cleaning
device memory. We plan to check these abnormal behaviors
to see if there are any security concerns.

UI-based Permission Access Control
With the permission-UI mappings, we are able to provide
support for UI-based permission access control. It might be
attractive and useful if users could select different permissions
for different UI components. The challenges may include
isolating UI components, providing easy-to-use configuration
interfaces and supporting legacy apps.

CONCLUDING REMARKS
In order to help users better understand how and why permis-
sions are used within a mobile application, this paper intro-
duces permission-UI mapping as a fine-grained and easy-to-
understand representation on how permissions are used by
each UI components in an app. We have designed and im-
plemented PERUIM to automatically extract permission-UI
mappings from Android apps and visualize the results to help
user understanding. We have evaluated the accuracy and ap-
plicability of PERUIM with experiments on popular Android
apps.
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Table 4. The results of Permission-UI mapping.
App com.devexpert.weather com.aws.android

UI state

# UI components 7 5 4 6 3 3 10 9 2 8
# Perm-UI mappings 16 5 4 14 8 5 6 8 2 4
# Correct mappings 12 4 4 10 6 4 4 4 2 3

App com.avast.android.cleaner com.ljmobile.move.app

UI state

# UI components 2 3 5 5 6 11 2 1 5 4
# Perm-UI mappings 1 5 2 3 4 2 1 1 1 0
# Correct mappings 1 4 2 2 2 2 1 1 1 0

App com.magnifis.parking nexti.android.bustaipei

UI state

# UI components 3 4 10 1 5 12 3 5 2 3
# Perm-UI mappings 5 6 2 4 8 14 6 1 0 0
# Correct mappings 5 6 2 2 6 13 3 1 0 0

App com.farproc.wifi.analyzer com.acmeaom.android.myradar

UI state

# UI components 3 4 6 2 3 3 5 11 2 7
# Perm-UI mappings 1 5 2 1 2 1 3 10 0 0
# Correct mappings 1 4 2 1 2 1 3 10 0 0

App bbc.mobile.news.ww com.mobstac.thehindu

UI state

# UI components 3 3 3 3 4 1 8 4 7 2
# Perm-UI mappings 2 2 2 1 0 0 10 13 13 10
# Correct mappings 2 1 1 1 0 0 6 9 8 6
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