
Fixing Sensor-Related Energy Bugs through Automated Sensing Policy Instrumentation

Yuanchun Li, Yao Guo, Junjun Kong, Xiangqun Chen
Key Laboratory of High-Confidence Software Technologies (Ministry of Education)

School of Electronics Engineering and Computer Science, Peking University, Beijing, China
{ liyc14, yaoguo, kongjj07, cherry }@sei.pku.edu.cn

Abstract

As mobile applications (apps) become more and more
complex, many apps contain various energy bugs, which may
cause energy wastes that might reduce the battery life to as
short as several hours. Among them, sensor-related bugs such
as sensor data underutilization is one of the most common
energy bugs. Instead of trying to detect these energy bugs, this
paper proposes a method to fix sensor data underutilization
automatically through instrumentation of existing apps. App-
specific energy-aware sensing policies can be written to the
apps via an automated instrumentation process, which can also
be customized by users if needed. The proposed technique is
easy to apply as it does not need to modify the operating
system or the apps. At the same time, it also works for existing
legacy apps, which makes it practical and feasible for a wide-
range of mobile apps. Experimental results on popular
Android apps show that we are able to achieve significant
energy savings through automated instrumentation and
rebuilding the targeted apps.

Keywords
Mobile applications, sensors, instrumentation, energy

optimization, Android

1. Introduction
Smartphones have become more and more popular since

the introduction of iPhone and Android-based devices.
Compared to traditional phones, smartphones have more
powerful functions and are capable of performing complex
computations, while equipped with various sensors such as
cameras and GPS. More and more complex mobile
applications (or simply apps) are running on smartphones,
which could reduce the battery life to as short as several hours.

Energy inefficiencies (or energy bugs [1]) in mobile apps
is one of the main reasons why smartphones have a very short
battery life. For example, researchers have identified that
many apps contain various energy bugs such as no-sleep bugs
[2], energy leaks [3], and sensor-related energy black holes
[4][5]. Among all kinds of energy bugs, sensor-related energy
bugs is one of the most common problems, while the most
common case is sensor data underutilization. For example, a
navigator app may keep fetching GPS coordinates even when
GPS signal is weak or imprecise; a pedometer app may keep
sampling accelerometer at a high frequency even when the
smartphone is motionless. Sensor data underutilization is a
common problem because developers are either unaware of
the power difference at different rate levels, or simply ignore
them to reduce development efforts.

Detecting these energy bugs is only a first step towards
solving the battery life problem. In order to fix these energy
bugs, we usually need to report these bugs to app developers

who owns the source code, and wait for them to take action
and release a new version. However, this might not always be
possible if your favorite app does not have an active
maintainer. Even somebody is willing to modify the code, it
could also become a lengthy process. This paper explores
these issues in a different direction, searching for an approach
to automatically fixing these energy bugs.

In this paper, we attempt to solve the sensor data
underutilization issues from a different angle: fixing sensor
data underutilization issues automatically without the help of
developers. Our proposed solution does not depend on the
availability of source code, instead we exploit the reverse
engineering capability of Android apps and fix the energy
bugs through instrumentation. App-specific energy-aware
sensing policies will be instrumented into the apps through
automatic patching, repackaging and re-installation. In a
typical usage scenario, a user only needs to click a button to
transform his apps into an energy-aware version. A more
technology savvy user could also define his/her own policies
to save more energy.

Our approach optimizes sensing energy of real-world apps
by attaching app-specific sensing policies. First, we define
different contexts for different apps. For example, navigator
apps use INDOOR and URBAN contexts, while pedometer
apps use MOTIONLESS and MOVING contexts. Then we
identify different actions taken by each app in the same
context. For example, some sensor-related games need to keep
frequently sampling motion sensor data because the apps need
to rapidly react to sudden motion in the MOTIONLESS
context. We also provide an interface for developers to define
app-specific contexts and context-aware sensing policies, and
provide an interface for users to choose appropriate policies to
automatically optimize the sensing apps.

Compared to existing work, our proposed solution has
several advantages. First, it has the ability to automatically
transform legacy sensing-related apps into energy-efficient
versions without needing source code. Second, different
frequency scaling policies can be easily applied to mobile
apps, either statically or dynamically. Finally, it can be applied
to a wide range of mobile sensors on modern smartphones.

We have implemented an instrumentation framework on
Android to demonstrate the applicability of the proposed
technique. We are able to add adaptive sensing abilities into
existing apps such as navigators and pedometers. The
evaluation results with volunteer users show that sensing
sampling frequencies of a pedometer app can be reduced by
more than 90%, while energy consumption can be reduced by
more than 50% on average.

2. Background and Related Work

978-1-4673-8009-6/15/$31.00 ©2015 IEEE 321 Symposium on Low Power Electronics and Design

2.1. Sensing in Mobile Apps
Modern smartphones are equipped with multiple sensors

such as accelerometer, gyroscope, magnetic field sensor,
digital compass, proximity sensor, GPS, microphone, etc.

Many mobile apps are using multiple sensors. Our analysis
of the top 500 apps in each of the 27 app categories in Google
Play shows that over 55% of apps use some kinds of sensors
through various Android sensing APIs (shown in Figure 1).

Figure 1: Distribution of mobile apps using sensing APIs in
different categories.

In Android, in order to fetch data from a sensor, an app
needs to assign a sampling rate level (FASTEST, GAME, UI,
NORMAL1) while registering a sensor event listener to the
targeted sensor. After registration, sensors work at the
assigned rate level and pass sensor events (which carry sensor
raw data) to the callback function of the sensor event listener.

Different sampling rate may affect both sensor access
latency and sensing power. For example, at the FASTEST
level, sensors usually have the lowest latency and highest
power, while at the NORMAL level, sensors usually have the
highest latency but lowest power. Our measurements show
that the access latency and power consumption can both be
varied by up to an order of magnitude2, which shows that there
exists great potential for energy optimization with proper
tradeoffs between latency and power.

2.2. Energy Bugs
Energy bugs were first introduced by Pathak et al. [1].

They have also characterized no-sleep bugs [2] and use data
flow analysis to detect no-sleep sensor energy bugs.

ADEL [3] uses dynamic taint analysis to detect and isolate
a different class of energy bugs called energy leaks. An energy
leak is the use of energy on activities that never directly or
indirectly influence user-observable outputs on a smartphone.

GreenDroid [4][5] makes further efforts to detect sensor
related energy black holes. They extend the definition of
sensor energy bugs and study sensor data underutilization as a
kind of sensor energy inefficiency bugs. GreenDroid can
explore the state space of an app by systematically executing
the app using Java Path Finder.

Instead of detecting sensor data underutilization problem,
our work attempts to fix them automatically.

2.3. Sensing Energy Optimization

1 Their sampling frequencies are listed in descending order.
2 We omitted the experiment data here due to space limitation.

There have been many related work on improving energy
efficiency of sensing-related and context-aware apps. One way
to do this is to reduce energy consumption of high-power
sensors in order to achieve whole system energy saving, such
as in LEAP [6]. Hardware-based techniques like co-processor
off-loading are also used for sensing energy saving, such as
LittleRock [7] and DSP.Ear [8]. At a higher level, context-
aware energy optimization can substitute high-energy sensors
with low-cost sensors to improve sensing energy cost
[9][10][11][12].

Sampling frequency scaling is efficient for sensing energy
reduction because power consumption rises significantly as
the rate level rises. Apps are often able to save power without
too much precision loss by scaling down the sampling
frequency level. Several recent studies [13][14][15][16]
proposed adaptive sensing techniques as a trade-off between
energy and accuracy. One typically method is to scale the
sampling rate based on contexts. For example, Paek et al. [14]
and Lin et al. [13] lower location sampling frequency when
GPS is inaccurate in some urban area. LiKamWa et al. [17]
apply an aggressive standby mode in which they choose an
optimal clock frequency to reduce energy consumption.

Some other work have tried to solve the sensing energy
problem from the developers' perspective. For example,
Kansal et al. [18] presents a new programming abstraction
allowing developers to specify the latency, accuracy and
battery constraints.

These existing approaches mainly achieve energy saving
with sensor-level and context-based optimization techniques.
Sensor-level optimization mostly requires modification to the
firmware or even to the hardware. Context-based energy
optimization approaches are mainly based on a common
observation: sensor data of a high-power sensor is often
underutilized in some context. For example, navigator apps
might underutilize GPS sensor data when smartphone is
indoor or in urban areas, where GPS signal is weak or
imprecise [14]; Pedometer apps might keep wasting motion
sensing energy when the smartphone is motionless; Web apps
might repetitively send connection requests when the phone is
in bad network state. Existing studies focus on the definition
and detection of these contexts, and implement sensing
optimization policies mostly at the system level (which is hard
to customize) or at the app level (which needs modification to
the source code).

The existing approaches either deal with specific sensors,
require modifications to the system or require new
development efforts. In comparison, our approach attempts to
fix energy bugs by modifying the mobile apps even when
source code is unavailable.

3. Our Approach

3.1. Approach Overview
 Our goal is to optimize the energy consumption of apps

that rely heavily on sensors, particularly continuous sensing
apps, which means that in order to maintain its functions, the
app must access relevant sensors periodically at a preset
sampling rate level (e.g., there are four different sampling rate
levels in Android, as specified above). Our basic idea is to
help mobile apps to choose the most appropriate sample rate.

Considering the following scenario when driving a car
using your smartphone as a navigation device. Smartphones
will retrieve GPS data at a fixed frequency, regardless of your
driving speed. However, when you are waiting at a traffic
light, you do not need to access the GPS data at the same
frequency as when you are driving at 120km per hour. The
sampling rate could be adjusted dynamically with
modification to either the device driver, the sensor access
libraries or OS services.

In this paper, we do not want to modify the system, as it
might involve complicated updating at the user side. We want
to transform a mobile app into an energy-aware version with
adaptive sensing as described above.

APK Adapter

Smali Parser Sensing Policy
Definition

Instruction
Rewriter

ClassNode

...

Original
Sensing App

Energy-aware
Sensing app

Smali Tree

ClassNode

ClassNode

MethodNode
-Insns[]

Instrumenting
Rules

<position, code>

Figure 2: The workflow of the proposed approach.

How do we write these adaptive policies to an existing
(Android) app? Figure 2 illustrates the workflow of the
proposed approach. The key technique behind our approach is
the app rewriting framework, which relies on instrumentation
to apply energy-aware sensing policies through the energy-
aware sensing APIs we defined.

Energy-aware sensing policies can be either defined
manually or generated automatically according to the
requirements of a specific app. The energy-aware sensing
APIs extend the existing Android sensing APIs and enable
mobile apps to dynamically change sensor sampling frequency
according to the specified sensing policies at runtime. Finally,
the app rewriting framework completes the actual rewriting
process and transform an existing sensing app into an energy-
aware version.

3.2. Energy-Aware Sensing APIs
Android apps follow a typical process when accessing a

sensor, which mainly involves two sensing APIs:
 SensorManager;->registerListener(...);
 SensorManager;->unregisterListener(...);
In a typical sensing app, it first defines a sensor event

listener and registers it to the sensor by calling
registerListener. Once the sensor completes a sampling event,
the sensed raw data is passed as an argument of the callback
method onSensorChanged in the listener. The frequency of
sensor data updating depends on a parameter of the

registerListener method, which can be specified as one of the
following: FASTEST, GAME, UI, or NORMAL.

The sensing APIs provided by Android can be easily
misused by average developers. The register API tells the
Android system to sample sensor data at a certain rate level,
and the rate level will never change until the unregister API is
called. If we register a sensor event listener with the
FASTEST level, the sampling frequency will keep as
FASTEST no matter how the sensor data is used. An
experienced developer could determine whether the sensor
data is efficiently used and scale down the rate level once
underutilization is found. However most developers ignore
these issues and register the listener only once for
convenience.

We define energy-aware sensing APIs as adaptive
versions of the original sensing APIs in a class named
AdaptiveSensorManager. The adaptive sensing APIs take
exactly the same parameters as the original ones, but they can
dynamically change sensor status according to the sensing
policy. For example, if we call the adaptive registerListener
API with the FASTEST rate level, it does not mean the sensor
will remain working at the FASTEST frequency all the time.
Instead, the sensing frequency will decrease when we found
the high frequency is not necessary.

3.3. Energy-aware Sensing Policies
To fix sensor underutilization bugs, we define context-

based adaptive sensing policies, which includes two parts:
1. Context definitions. Sensor data is underutilized in some

contexts and efficiently utilized in other contexts.
Contexts should be defined with clear entering criteria
and exiting criteria.

2. Scaling actions. Scaling actions describe how we scale the
sampling frequency in different contexts. For example,
sampling frequency should be scaled down when sensor
underutilization is detected, while it should be scaled to
the original level if the sensor data are used efficiently.

Context determination is the most important part in
adaptive frequency scaling. Many existing context-aware
approaches make use of sensor data, location, and WIFI
signals to determine various contexts. In this paper, we simply
use the accelerometer and WIFI signal information to
determine the contexts.

For example, we can define a Sampling Frequency Scaling
policy for pedometer apps. The original pedometer app
samples the accelerometer at the FASTEST level even in the
MOTIONLESS context, which is a case of sensor data
underutilization, thus we can decrease its sampling frequency
in the MOTIONLESS context. Similarly, when the
smartphone is moving, the variation of accelerometer will
exceed a certain threshold, and the context will be switched to
MOVING. In the MOVING context, the sampling frequency
will be scaled up.

Sensor
Value
(sv)

SCALING_TIME_WINDOW
Δsv > Threshold_max:

Frequency++
Δsv < Threshold_min:

Frequency--

Time(ms)Threshold_max
Threshold_min

Figure 3: An example of the sampling frequency scaling policy of the pedometer app.

Figure 3 presents an example of adaptive scaling for the
pedometer app. The app tries to scale frequency every
SCALE_TIME_WINDOW seconds. At first, the app worked at
a low frequency. At the end of the second cycle, the MOVING
context was detected and the pedometer started to scale up it
sampling frequency. At the end of the fourth cycle, the app
enters the MOTIONLESS context and the frequency was
decreased.
 For another example, we can define a Block Indoor GPS
policy for navigator apps. For a navigator app, we can simply
determine whether the app enters the INDOOR context by
checking whether the WIFI AP that the smartphone is
currently connected to is in a pre-defined indoor WIFI AP list.
When the smartphone is in the INDOOR context, we can turn
off GPS positioning to save energy, and vice versa.

A principle of defining contexts is that the context
determination cost should be much smaller than the original
sensing cost. For example, we make use of the existing
accelerometer data to determine the context for the pedometer,
and we use cheaper WIFI information for the GPS navigator.

Each app has its specific sensing policy. A sensing policy
may be applicable for a set of apps, but there is no universal
policy. For example, the Sample Frequency Scaling sensing
policy we used for the pedometer app is not applicable for
some games using the accelerometer, such as a maze app.
Games need to react to users' sudden movement, so it cannot
tolerate the long latency caused by scaling down the sampling
frequency.

3.4. The App Rewriting Framework
App instrumentation depends on the targeted system. In

our case, the targeted system is Android. It is easy to rewrite
an Android app. For example, we can dissemble the
classes.dex file into to the human-readable smali format using
baksmali. Similarly, the smali code, after modification, can be
converted back to a new app.

As shown in Figure 2, the app rewriting framework for
Android apps includes the following steps:

1. Disassemble the .dex file to smali code.
2. Run static analysis on the smali code and identify

instrumenting entrances.
3. Insert adaptive sensing library code to appropriate

positions in the smali code.
4. Assemble the rewritten smali, repackage and sign the

instrumented application.
Our adaptive sensing library works with a service named

ContextService. ContextService runs in background detecting
the smartphone’s context and controls the sensing status of
sensing apps according to the corresponding sensing policies.

It requires the adaptive sensing libraries we added into apps
able to communicate with ContextService. We solved this by
adding a sensing monitor thread to the sensing library, and the
thread starts running once the sensor is getting to work. To
enable IPC between the sensing monitor threads and
ContextService, we make use of the AIDL mechanism in
Android. We insert an AIDL module to each sensing app and
install the ContextService using AIDL interfaces, thus sensing
apps are able to get current context and sensing policies
generated by ContextService

System

Sensing App
1

Sensing App
2

Sensing App
n

Monitor
Thread 2

Monitor
Thread 3

Master APP

AIDL ModuleAIDL ModuleAIDL ModuleAIDL Module

Monitor
Thread 2

ContextService

Figure 4: The structure of rewritten sensing apps.

Furthermore, we introduce a master app to let users
configure sensing policies for different sensing apps.
Smartphone users can select from several recommended pre-
defined sensing policies, or define their own policies.

After rewriting, each sensing app has an extra adaptive
sensing library compared to the original version. If the master
app and ContextService are installed as required, the structure
of the sensing apps interacting with each other will be the
same as shown in Figure 4.

4. Evaluation
In order to demonstrate the performance of sensing policy,

we apply the Sample Frequency Scaling sensing policy to a
pedometer app, and perform a series of experiments with both
in-lab tests and real user traces.

In our experiments, we use Google Nexus 5 with Android
4.4 to install and run a pedometer app from Google Play3. In
lab experiments, we use the Monsoon power monitor to
calculate energy consumption and generate a power model of

3https://play.google.com/store/apps/details?id=name.bagi.levente

.pedometer

https://play.google.com/store/apps/details?id=name.bagi.levente.pedometer
https://play.google.com/store/apps/details?id=name.bagi.levente.pedometer

the accelerometer at different rate levels. In real user trace
study, we calculate how much time the pedometer spent at
each rate level, and calculate the total energy consumption
according to the power model.

4.1. Lab Experiments
In order to understand the energy savings and whether we

are able to maintain the detection accuracy in the original app,
we first conducted experiments in a controlled lab
environment.

4.1.1. Power Consumption

Figure 5: Power consumption of the smartphone, while
running pedometer at different rate levels (screen off).

We first measure the power consumption of the whole
smartphone with the power monitor. With the help of
bytecode rewriting, we control the pedometer to run at
different rate levels (with screen off). We measure the power
consumption at each rate level.

Figure 5 shows the results. We can see that the smartphone
power can be reduced from 180mW to 80mW when we set the
accelerometer into the NORMAL (slowest) mode, instead of
the FASTEST mode, which shows that it is meaningful to
control the sampling rate of accelerators.

4.1.2. Accuracy
In order to measure the accuracy of the pedometer app, we

compare the step counts calculated by the modified app, and
compare them with the original app.

We ask our volunteers to carry the smartphone with the
pedometer running, while at same time counting his own steps.
After walking for 200 steps, we record the step counts of the
pedometer at 50th, 100th, and 200th step, respectively. We
record three groups of step counting data, the first two groups
are from the original pedometer, and the last group uses our
repackaged pedometer with adaptive sensing enabled. The
results are shown in Table 1.

 Original
App 1

Original
App 2

Optimized
App 3

At 50th step 61 57 59
At 100th step 104 117 107
At 200th step 214 221 219

Table 1: Accuracy comparison of the original and energy-
optimized pedometer.

We notice that the pedometer tends to over-estimate the
number of steps, but the range of errors remains stable after
we apply the energy-aware policies in the instrumented app.

4.2. User Trace Study

(a) User 1

(b) User 2

(c) User 3

Figure 6: Distributions of sensing activities in different
pedometer user traces.

In order to evaluate the energy optimization effects in a
real environment, we installed the optimized pedometer to the
smartphones of three different volunteers to collect real user
traces. The app is modified to record the sensing rate level and
callback counts. Figure 6 shows the distribution of sensing
activities in the user traces. Each subfigure presents the trace
for one user. The colored lines indicate the pedometer works
at FASTEST rate level during the corresponding time period,
and the blank indicate the pedometer works at the lower rate
level (to make it simple, we do not distinguish the different
lower rate levels in the figures.). We can see that the
accelerometer samples at the lower rate mostly, while in the
original app, the meter keeps running at the highest rate.

We calculate the total time of the pedometer working at
each rate level, and recorded the total number of sampling
counts, which are shown in Table 2. We can see that we are
able to put the sensing frequency at the lowest level in over
90% of time duration.

We then calculated the energy consumption using the
power numbers as shown in Figure 5, the energy comparison
result is shown in Table 3. We are able to reduce the number
of sensing actions by over 90%, while improve the whole
device energy by more than 50% for all users.

5. Concluding Remarks
This paper proposes an instrumentation-based approach to

fix sensor data underutilization in a mobile app automatically.
With the help of an instrumentation framework, we are able to
inject sensing policies into a mobile app, thus converting
sensing mobile apps into energy-aware apps that can adjust
sensing frequencies adaptively according to the current
context.

User Total time (s) Time(s)
(FASTEST)

Time(s)
(GAME)

Time(s)
(UI)

Time(s)
(NORMAL)

Sampling
count

1 131923 3475 1209 1306 125933 1410737
2 130136 5535 825 875 122901 1102359
3 57865 213 454 829 56369 333883

Table 2: Sensing statistics of pedometers for different users.

User Total time (s) Time(s)
(FASTEST)

Time(s)
(GAME)

Time(s)
(UI)

Time(s)
(NORMAL)

Sampling
count

1 131923 3475 1209 1306 125933 1410737
2 130136 5535 825 875 122901 1102359
3 57865 213 454 829 56369 333883

Table 3: Sampling counts and energy saving for different users.

Through experiments, we demonstrate that it is effective
and practical to instrument mobile pedometer apps to save
energy automatically. We plan to explore more sensing
policies and investigate the proposed techniques further to
make it work for a wide range of mobile sensing apps.

Acknowledgments
This work is partly supported by the High-Tech Research

and Development Program of China under Grant
No.2015AA01A203, the National Basic Research Program of
China (973) under Grant No. 2011CB302604, and the
National Natural Science Foundation of China under Grant
No.61421091, 61370020，61103026.

References
1. Abhinav Pathak, Y Charlie Hu, and Ming Zhang,

"Bootstrapping energy debugging on smartphones: a first
look at energy bugs in mobile devices", in HotNet. ACM,
2011, p. 5.

2. Abhinav Pathak, Abhilash Jindal, Y Charlie Hu, and
Samuel PMidkiff, "What is keeping my phone awake?:
characterizing and detecting no-sleep energy bugs in
smartphone apps", in MobiSys. ACM, 2012, pp. 267-280.

3. Lide Zhang, Mark S Gordon, Robert P Dick, Z Morley
Mao, Peter Dinda, and Lei Yang, "Adel: An automatic
detector of energy leaks for smartphone applications", in
CODES. ACM, 2012, pp. 363-372.

4. Yepang Liu, Chang Xu, and SC Cheung, "Where has my
battery gone? finding sensor related energy black holes in
smartphone applications", in PerCom. IEEE, 2013, pp. 2-
10.

5. Y. Liu, C. Xu, S. Cheung, and J. Lu, "Greendroid:
Automated diagnosis of energy ineffciency for smartphone
applications", IEEE Trans on Software Engineering, 2014.

6. Heitor S Ramos and Nissanka B Priyantha, "LEAP: A Low
Energy Assisted GPS for Trajectory-Based Services", in
Proc. of UbiComp'11. 2011, pp. 335-344, ACM.

7. Bodhi Priyantha, Dimitrios Lymberopoulos, and Jie Liu,
"LittleRock: Enabling Energy-Effcient Continuous Sensing
on Mobile Phones", IEEE Pervasive Computing, vol. 10,
no. 2, pp. 12-15, 2011.

8. Petko Georgiev, Nicholas D. Lane, Kiran K. Rachuri, and
Cecilia Mascolo, "Dsp.ear: Leveraging co-processor
support for continuous audio sensing on smartphones", in
SenSys, 2014, pp. 295-309, ACM.

9. Donnie H Kim, Younghun Kim, Deborah Estrin, and Mani
B Srivastava, "SensLoc: Sensing Everyday Places and
Paths using Less Energy", in SenSys, 2010, pp. 43-56.

10. Nirmalya Roy, Archan Misra, Christine Julien, Sajal K.
Das, and Jit Biswas, "An energy-effcient quality adaptive
framework for multi-modal sensor context recognition", in
PerCom. 2011, pp. 63-73, IEEE.

11. Suman Nath, "ACE: exploiting correlation for energy-
effcient and continuous context sensing", in Proc. of
MobiSys'12. 2012, pp. 29-42, ACM.

12. Kartik Sankaran, Minhui Zhu, Xiang Fa Guo, Akkihebbal
L. Ananda, Mun Choon Chan, and Li-Shiuan Peh, "Using
mobile phone barometer for low-power transportation
context detection", in SenSys, 2014, pp. 191-205, ACM.

13. Kaisen Lin, Aman Kansal, Dimitrios Lymberopoulos, and
Feng Zhao, "Energy-accuracy trade-off for continuous
mobile device location", in MobiSys'10, 2010, pp. 285-
298.

14. Jeongyeup Paek, Joongheon Kim, and Ramesh Govindan,
"Energy-effcient rate-adaptive GPS-based positioning for
smartphones", in Proc. of MobiSys'10, 2010, pp. 299-314.

15. Zhenyun Zhuang, Kyu-Han Kim, and Jatinder Pal Singh,
"Improving energy effciency of location sensing on
smartphones", in MobiSys. 2010, pp. 315-330, ACM.

16. Kent W. Nixon, Xiang Chen, Hucheng Zhou, Yunxin Liu,
and Yiran Chen, "Mobile gpu power consumption
reduction via dynamic resolution and frame rate scaling",
in 6th Workshop on Power-Aware Computing and
Systems (HotPower 14), Broomfield, CO, Oct. 2014,
USENIX Association.

17. Robert LiKamWa, Bodhi Priyantha, Matthai Philipose, Lin
Zhong, and Paramvir Bahl, "Energy characterization and
optimization of image sensing toward continuous mobile
vision", in MobiSys. 2013, pp. 69-82, ACM.

18. Aman Kansal, Scott Saponas, AJ Brush, Kathryn S
McKinley, Todd Mytkowicz, and Ryder Ziola, "The
latency, accuracy, and battery (lab) abstraction:
programmer productivity and energy effciency for
continuous mobile context sensing", in OOPSLA. ACM,
2013, pp. 661-676.

