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Abstract 

As mobile applications (apps) become more and more 
complex, many apps contain various energy bugs, which may 
cause energy wastes that might reduce the battery life to as 
short as several hours. Among them, sensor-related bugs such 
as sensor data underutilization is one of the most common 
energy bugs. Instead of trying to detect these energy bugs, this 
paper proposes a method to fix sensor data underutilization 
automatically through instrumentation of existing apps. App-
specific energy-aware sensing policies can be written to the 
apps via an automated instrumentation process, which can also 
be customized by users if needed. The proposed technique is 
easy to apply as it does not need to modify the operating 
system or the apps. At the same time, it also works for existing 
legacy apps, which makes it practical and feasible for a wide-
range of mobile apps. Experimental results on popular 
Android apps show that we are able to achieve significant 
energy savings through automated instrumentation and 
rebuilding the targeted apps. 
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1. Introduction 
Smartphones have become more and more popular since 

the introduction of iPhone and Android-based devices. 
Compared to traditional phones, smartphones have more 
powerful functions and are capable of performing complex 
computations, while equipped with various sensors such as 
cameras and GPS. More and more complex mobile 
applications (or simply apps) are running on smartphones, 
which could reduce the battery life to as short as several hours. 

Energy inefficiencies (or energy bugs [1]) in mobile apps 
is one of the main reasons why smartphones have a very short 
battery life. For example, researchers have identified that 
many apps contain various energy bugs such as no-sleep bugs 
[2], energy leaks [3], and sensor-related energy black holes 
[4][5]. Among all kinds of energy bugs, sensor-related energy 
bugs is one of the most common problems, while the most 
common case is sensor data underutilization. For example, a 
navigator app may keep fetching GPS coordinates even when 
GPS signal is weak or imprecise; a pedometer app may keep 
sampling accelerometer at a high frequency even when the 
smartphone is motionless. Sensor data underutilization is a 
common problem because developers are either unaware of 
the power difference at different rate levels, or simply ignore 
them to reduce development efforts. 

Detecting these energy bugs is only a first step towards 
solving the battery life problem. In order to fix these energy 
bugs, we usually need to report these bugs to app developers 

who owns the source code, and wait for them to take action 
and release a new version. However, this might not always be 
possible if your favorite app does not have an active 
maintainer. Even somebody is willing to modify the code, it 
could also become a lengthy process. This paper explores 
these issues in a different direction, searching for an approach 
to automatically fixing these energy bugs. 

In this paper, we attempt to solve the sensor data 
underutilization issues from a different angle: fixing sensor 
data underutilization issues automatically without the help of 
developers. Our proposed solution does not depend on the 
availability of source code, instead we exploit the reverse 
engineering capability of Android apps and fix the energy 
bugs through instrumentation. App-specific energy-aware 
sensing policies will be instrumented into the apps through 
automatic patching, repackaging and re-installation. In a 
typical usage scenario, a user only needs to click a button to 
transform his apps into an energy-aware version. A more 
technology savvy user could also define his/her own policies 
to save more energy. 

Our approach optimizes sensing energy of real-world apps 
by attaching app-specific sensing policies. First, we define 
different contexts for different apps. For example, navigator 
apps use INDOOR and URBAN contexts, while pedometer 
apps use MOTIONLESS and MOVING contexts. Then we 
identify different actions taken by each app in the same 
context. For example, some sensor-related games need to keep 
frequently sampling motion sensor data because the apps need 
to rapidly react to sudden motion in the MOTIONLESS 
context. We also provide an interface for developers to define 
app-specific contexts and context-aware sensing policies, and 
provide an interface for users to choose appropriate policies to 
automatically optimize the sensing apps. 

Compared to existing work, our proposed solution has 
several advantages. First, it has the ability to automatically 
transform legacy sensing-related apps into energy-efficient 
versions without needing source code. Second, different 
frequency scaling policies can be easily applied to mobile 
apps, either statically or dynamically. Finally, it can be applied 
to a wide range of mobile sensors on modern smartphones. 

We have implemented an instrumentation framework on 
Android to demonstrate the applicability of the proposed 
technique. We are able to add adaptive sensing abilities into 
existing apps such as navigators and pedometers. The 
evaluation results with volunteer users show that sensing 
sampling frequencies of a pedometer app can be reduced by 
more than 90%, while energy consumption can be reduced by 
more than 50% on average. 

2. Background and Related Work 
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2.1. Sensing in Mobile Apps 
Modern smartphones are equipped with multiple sensors 

such as accelerometer, gyroscope, magnetic field sensor, 
digital compass, proximity sensor, GPS, microphone, etc. 

Many mobile apps are using multiple sensors. Our analysis 
of the top 500 apps in each of the 27 app categories in Google 
Play shows that over 55% of apps use some kinds of sensors 
through various Android sensing APIs (shown in Figure 1). 

 
Figure 1: Distribution of mobile apps using sensing APIs in 
different categories. 

In Android, in order to fetch data from a sensor, an app 
needs to assign a sampling rate level (FASTEST, GAME, UI, 
NORMAL1) while registering a sensor event listener to the 
targeted sensor. After registration, sensors work at the 
assigned rate level and pass sensor events (which carry sensor 
raw data) to the callback function of the sensor event listener. 

Different sampling rate may affect both sensor access 
latency and sensing power. For example, at the FASTEST 
level, sensors usually have the lowest latency and highest 
power, while at the NORMAL level, sensors usually have the 
highest latency but lowest power. Our measurements show 
that the access latency and power consumption can both be 
varied by up to an order of magnitude2, which shows that there 
exists great potential for energy optimization with proper 
tradeoffs between latency and power. 

2.2. Energy Bugs 
Energy bugs were first introduced by Pathak et al. [1]. 

They have also characterized no-sleep bugs [2] and use data 
flow analysis to detect no-sleep sensor energy bugs. 

ADEL [3] uses dynamic taint analysis to detect and isolate 
a different class of energy bugs called energy leaks. An energy 
leak is the use of energy on activities that never directly or 
indirectly influence user-observable outputs on a smartphone. 

GreenDroid [4][5] makes further efforts to detect sensor 
related energy black holes. They extend the definition of 
sensor energy bugs and study sensor data underutilization as a 
kind of sensor energy inefficiency bugs. GreenDroid can 
explore the state space of an app by systematically executing 
the app using Java Path Finder. 

Instead of detecting sensor data underutilization problem, 
our work attempts to fix them automatically. 

2.3. Sensing Energy Optimization 

                                                 
1 Their sampling frequencies are listed in descending order. 
2 We omitted the experiment data here due to space limitation. 

There have been many related work on improving energy 
efficiency of sensing-related and context-aware apps. One way 
to do this is to reduce energy consumption of high-power 
sensors in order to achieve whole system energy saving, such 
as in LEAP [6]. Hardware-based techniques like co-processor 
off-loading are also used for sensing energy saving, such as 
LittleRock [7] and DSP.Ear [8]. At a higher level, context-
aware energy optimization can substitute high-energy sensors 
with low-cost sensors to improve sensing energy cost 
[9][10][11][12]. 

Sampling frequency scaling is efficient for sensing energy 
reduction because power consumption rises significantly as 
the rate level rises. Apps are often able to save power without 
too much precision loss by scaling down the sampling 
frequency level. Several recent studies [13][14][15][16] 
proposed adaptive sensing techniques as a trade-off between 
energy and accuracy. One typically method is to scale the 
sampling rate based on contexts. For example, Paek et al. [14] 
and Lin et al. [13] lower location sampling frequency when 
GPS is inaccurate in some urban area. LiKamWa et al. [17] 
apply an aggressive standby mode in which they choose an 
optimal clock frequency to reduce energy consumption. 

Some other work have tried to solve the sensing energy 
problem from the developers' perspective. For example, 
Kansal et al. [18] presents a new programming abstraction 
allowing developers to specify the latency, accuracy and 
battery constraints. 

These existing approaches mainly achieve energy saving 
with sensor-level and context-based optimization techniques. 
Sensor-level optimization mostly requires modification to the 
firmware or even to the hardware. Context-based energy 
optimization approaches are mainly based on a common 
observation: sensor data of a high-power sensor is often 
underutilized in some context. For example, navigator apps 
might underutilize GPS sensor data when smartphone is 
indoor or in urban areas, where GPS signal is weak or 
imprecise [14]; Pedometer apps might keep wasting motion 
sensing energy when the smartphone is motionless; Web apps 
might repetitively send connection requests when the phone is 
in bad network state. Existing studies focus on the definition 
and detection of these contexts, and implement sensing 
optimization policies mostly at the system level (which is hard 
to customize) or at the app level (which needs modification to 
the source code). 

The existing approaches either deal with specific sensors, 
require modifications to the system or require new 
development efforts. In comparison, our approach attempts to 
fix energy bugs by modifying the mobile apps even when 
source code is unavailable. 

3. Our Approach 

3.1. Approach Overview 
 Our goal is to optimize the energy consumption of apps 

that rely heavily on sensors, particularly continuous sensing 
apps, which means that in order to maintain its functions, the 
app must access relevant sensors periodically at a preset 
sampling rate level (e.g., there are four different sampling rate 
levels in Android, as specified above). Our basic idea is to 
help mobile apps to choose the most appropriate sample rate. 



 

  

Considering the following scenario when driving a car 
using your smartphone as a navigation device. Smartphones 
will retrieve GPS data at a fixed frequency, regardless of your 
driving speed. However, when you are waiting at a traffic 
light, you do not need to access the GPS data at the same 
frequency as when you are driving at 120km per hour. The 
sampling rate could be adjusted dynamically with 
modification to either the device driver, the sensor access 
libraries or OS services. 

In this paper, we do not want to modify the system, as it 
might involve complicated updating at the user side. We want 
to transform a mobile app into an energy-aware version with 
adaptive sensing as described above. 
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Figure 2: The workflow of the proposed approach. 

How do we write these adaptive policies to an existing 
(Android) app? Figure 2 illustrates the workflow of the 
proposed approach. The key technique behind our approach is 
the app rewriting framework, which relies on instrumentation 
to apply energy-aware sensing policies through the energy-
aware sensing APIs we defined. 

Energy-aware sensing policies can be either defined 
manually or generated automatically according to the 
requirements of a specific app. The energy-aware sensing 
APIs extend the existing Android sensing APIs and enable 
mobile apps to dynamically change sensor sampling frequency 
according to the specified sensing policies at runtime. Finally, 
the app rewriting framework completes the actual rewriting 
process and transform an existing sensing app into an energy-
aware version. 

3.2. Energy-Aware Sensing APIs 
Android apps follow a typical process when accessing a 

sensor, which mainly involves two sensing APIs: 
  SensorManager;->registerListener(...); 
  SensorManager;->unregisterListener(...); 
In a typical sensing app, it first defines a sensor event 

listener and registers it to the sensor by calling 
registerListener. Once the sensor completes a sampling event, 
the sensed raw data is passed as an argument of the callback 
method onSensorChanged in the listener. The frequency of 
sensor data updating depends on a parameter of the 

registerListener method, which can be specified as one of the 
following: FASTEST, GAME, UI, or NORMAL. 

The sensing APIs provided by Android can be easily 
misused by average developers. The register API tells the 
Android system to sample sensor data at a certain rate level, 
and the rate level will never change until the unregister API is 
called. If we register a sensor event listener with the 
FASTEST level, the sampling frequency will keep as 
FASTEST no matter how the sensor data is used. An 
experienced developer could determine whether the sensor 
data is efficiently used and scale down the rate level once 
underutilization is found. However most developers ignore 
these issues and register the listener only once for 
convenience. 

We define energy-aware sensing APIs as adaptive 
versions of the original sensing APIs in a class named 
AdaptiveSensorManager. The adaptive sensing APIs take 
exactly the same parameters as the original ones, but they can 
dynamically change sensor status according to the sensing 
policy. For example, if we call the adaptive registerListener 
API with the FASTEST rate level, it does not mean the sensor 
will remain working at the FASTEST frequency all the time. 
Instead, the sensing frequency will decrease when we found 
the high frequency is not necessary. 

3.3. Energy-aware Sensing Policies 
To fix sensor underutilization bugs, we define context-

based adaptive sensing policies, which includes two parts: 
1. Context definitions.  Sensor data is underutilized in some 

contexts and efficiently utilized in other contexts. 
Contexts should be defined with clear entering criteria 
and exiting criteria. 

2. Scaling actions. Scaling actions describe how we scale the 
sampling frequency in different contexts. For example, 
sampling frequency should be scaled down when sensor 
underutilization is detected, while it should be scaled to 
the original level if the sensor data are used efficiently. 

Context determination is the most important part in 
adaptive frequency scaling. Many existing context-aware 
approaches make use of sensor data, location, and WIFI 
signals to determine various contexts. In this paper, we simply 
use the accelerometer and WIFI signal information to 
determine the contexts. 

For example, we can define a Sampling Frequency Scaling 
policy for pedometer apps. The original pedometer app 
samples the accelerometer at the FASTEST level even in the 
MOTIONLESS context, which is a case of sensor data 
underutilization, thus we can decrease its sampling frequency 
in the MOTIONLESS context. Similarly, when the 
smartphone is moving, the variation of accelerometer will 
exceed a certain threshold, and the context will be switched to 
MOVING. In the MOVING context, the sampling frequency 
will be scaled up. 
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Figure 3: An example of the sampling frequency scaling policy of the pedometer app. 

Figure 3 presents an example of adaptive scaling for the 
pedometer app. The app tries to scale frequency every 
SCALE_TIME_WINDOW seconds. At first, the app worked at 
a low frequency. At the end of the second cycle, the MOVING 
context was detected and the pedometer started to scale up it 
sampling frequency. At the end of the fourth cycle, the app 
enters the MOTIONLESS context and the frequency was 
decreased. 
 For another example, we can define a Block Indoor GPS 
policy for navigator apps. For a navigator app, we can simply 
determine whether the app enters the INDOOR context by 
checking whether the WIFI AP that the smartphone is 
currently connected to is in a pre-defined indoor WIFI AP list. 
When the smartphone is in the INDOOR context, we can turn 
off GPS positioning to save energy, and vice versa. 

A principle of defining contexts is that the context 
determination cost should be much smaller than the original 
sensing cost. For example, we make use of the existing 
accelerometer data to determine the context for the pedometer, 
and we use cheaper WIFI information for the GPS navigator. 

Each app has its specific sensing policy. A sensing policy 
may be applicable for a set of apps, but there is no universal 
policy. For example, the Sample Frequency Scaling sensing 
policy we used for the pedometer app is not applicable for 
some games using the accelerometer, such as a maze app. 
Games need to react to users' sudden movement, so it cannot 
tolerate the long latency caused by scaling down the sampling 
frequency. 

3.4. The App Rewriting Framework 
App instrumentation depends on the targeted system. In 

our case, the targeted system is Android. It is easy to rewrite 
an Android app. For example, we can dissemble the 
classes.dex file into to the human-readable smali format using 
baksmali. Similarly, the smali code, after modification, can be 
converted back to a new app. 

As shown in Figure 2, the app rewriting framework for 
Android apps includes the following steps: 

1.  Disassemble the .dex file to smali code. 
2.  Run static analysis on the smali code and identify 

instrumenting entrances. 
3.  Insert adaptive sensing library code to appropriate 

positions in the smali code. 
4.  Assemble the rewritten smali, repackage and sign the 

instrumented application. 
Our adaptive sensing library works with a service named 

ContextService. ContextService runs in background detecting 
the smartphone’s context and controls the sensing status of 
sensing apps according to the corresponding sensing policies. 

It requires the adaptive sensing libraries we added into apps 
able to communicate with ContextService. We solved this by 
adding a sensing monitor thread to the sensing library, and the 
thread starts running once the sensor is getting to work. To 
enable IPC between the sensing monitor threads and 
ContextService, we make use of the AIDL mechanism in 
Android. We insert an AIDL module to each sensing app and 
install the ContextService using AIDL interfaces, thus sensing 
apps are able to get current context and sensing policies 
generated by ContextService 
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Figure 4: The structure of rewritten sensing apps. 

Furthermore, we introduce a master app to let users 
configure sensing policies for different sensing apps. 
Smartphone users can select from several recommended pre-
defined sensing policies, or define their own policies.  

After rewriting, each sensing app has an extra adaptive 
sensing library compared to the original version. If the master 
app and ContextService are installed as required, the structure 
of the sensing apps interacting with each other will be the 
same as shown in Figure 4. 

4. Evaluation 
In order to demonstrate the performance of sensing policy, 

we apply the Sample Frequency Scaling sensing policy to a 
pedometer app, and perform a series of experiments with both 
in-lab tests and real user traces. 

In our experiments, we use Google Nexus 5 with Android 
4.4 to install and run a pedometer app from Google Play3. In 
lab experiments, we use the Monsoon power monitor to 
calculate energy consumption and generate a power model of 

                                                 
3https://play.google.com/store/apps/details?id=name.bagi.levente

.pedometer  

https://play.google.com/store/apps/details?id=name.bagi.levente.pedometer
https://play.google.com/store/apps/details?id=name.bagi.levente.pedometer


 

  

the accelerometer at different rate levels. In real user trace 
study, we calculate how much time the pedometer spent at 
each rate level, and calculate the total energy consumption 
according to the power model. 

4.1. Lab Experiments 
In order to understand the energy savings and whether we 

are able to maintain the detection accuracy in the original app, 
we first conducted experiments in a controlled lab 
environment. 

4.1.1. Power Consumption 

 
Figure 5: Power consumption of the smartphone, while 
running pedometer at different rate levels (screen off). 

We first measure the power consumption of the whole 
smartphone with the power monitor. With the help of 
bytecode rewriting, we control the pedometer to run at 
different rate levels (with screen off). We measure the power 
consumption at each rate level.  

Figure 5 shows the results. We can see that the smartphone 
power can be reduced from 180mW to 80mW when we set the 
accelerometer into the NORMAL (slowest) mode, instead of 
the FASTEST mode, which shows that it is meaningful to 
control the sampling rate of accelerators. 

4.1.2. Accuracy 
In order to measure the accuracy of the pedometer app, we 

compare the step counts calculated by the modified app, and 
compare them with the original app. 

We ask our volunteers to carry the smartphone with the 
pedometer running, while at same time counting his own steps. 
After walking for 200 steps, we record the step counts of the 
pedometer at 50th, 100th, and 200th step, respectively. We 
record three groups of step counting data, the first two groups 
are from the original pedometer, and the last group uses our 
repackaged pedometer with adaptive sensing enabled. The 
results are shown in Table 1. 

 Original 
App 1 

Original 
App 2 

Optimized 
App 3 

At 50th step 61 57 59 
At 100th step 104 117 107 
At 200th step 214 221 219 

Table 1: Accuracy comparison of the original and energy-
optimized pedometer. 

We notice that the pedometer tends to over-estimate the 
number of steps, but the range of errors remains stable after 
we apply the energy-aware policies in the instrumented app. 

4.2. User Trace Study 

 
(a) User 1 

 
(b) User 2 

 
(c) User 3 

Figure 6: Distributions of sensing activities in different 
pedometer user traces. 

In order to evaluate the energy optimization effects in a 
real environment, we installed the optimized pedometer to the 
smartphones of three different volunteers to collect real user 
traces. The app is modified to record the sensing rate level and 
callback counts. Figure 6 shows the distribution of sensing 
activities in the user traces. Each subfigure presents the trace 
for one user. The colored lines indicate the pedometer works 
at FASTEST rate level during the corresponding time period, 
and the blank indicate the pedometer works at the lower rate 
level (to make it simple, we do not distinguish the different 
lower rate levels in the figures.). We can see that the 
accelerometer samples at the lower rate mostly, while in the 
original app, the meter keeps running at the highest rate. 

We calculate the total time of the pedometer working at 
each rate level, and recorded the total number of sampling 
counts, which are shown in Table 2. We can see that we are 
able to put the sensing frequency at the lowest level in over 
90% of time duration. 

We then calculated the energy consumption using the 
power numbers as shown in Figure 5, the energy comparison 
result is shown in Table 3. We are able to reduce the number 
of sensing actions by over 90%, while improve the whole 
device energy by more than 50% for all users. 

5. Concluding Remarks 
This paper proposes an instrumentation-based approach to 

fix sensor data underutilization in a mobile app automatically. 
With the help of an instrumentation framework, we are able to 
inject sensing policies into a mobile app, thus converting 
sensing mobile apps into energy-aware apps that can adjust 
sensing frequencies adaptively according to the current 
context. 

 



 

  

User  Total time (s) Time(s) 
(FASTEST) 

Time(s) 
(GAME) 

Time(s) 
(UI) 

Time(s) 
(NORMAL) 

Sampling 
count 

1 131923 3475 1209   1306 125933 1410737 
2 130136 5535  825 875 122901 1102359 
3 57865 213 454 829 56369 333883 

Table 2: Sensing statistics of pedometers for different users. 

User  Total time (s) Time(s) 
(FASTEST) 

Time(s) 
(GAME) 

Time(s) 
(UI) 

Time(s) 
(NORMAL) 

Sampling 
count 

1 131923 3475 1209   1306 125933 1410737 
2 130136 5535  825 875 122901 1102359 
3 57865 213 454 829 56369 333883 

Table 3: Sampling counts and energy saving for different users.

Through experiments, we demonstrate that it is effective 
and practical to instrument mobile pedometer apps to save 
energy automatically. We plan to explore more sensing 
policies and investigate the proposed techniques further to 
make it work for a wide range of mobile sensing apps. 
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